Abstract

There have been strong demands for nanofibrous scaffolds fabricated by electrospinning for various fields due to their various advantages. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibre mats were prepared. The effects of processing variables as well as the inclusion of poly(ethylene glycol) (PEG) on the morphologies of generated fibres were investigated using Fourier-transform infrared spectroscopy and scanning electron microscopy. The average fibrous diameter was monitored in the range 400-3000 nm relying on the total content of PEG. The fluorescence cell imaging of electrospun mats was also explored. The results of cell viability demonstrated that skin fibroblast BJ-1 cells showed different adhesions and growth rates for the three kinds of PHBV fibres. Electrospun PHBV mats with low amount of PEG offer a high-quality medium for cell growth. Therefore, those mats exhibited high potential for soft tissue engineering, in particular wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.