Abstract

Yttria stabilized zirconia (YSZ) has widely been used as an electrolyte in solid oxide fuel cell (SOFC) stacks. The microstructure and properties of YSZ related to the fabrication process are discussed in this paper. For the named two-step sintering process, uniform and hexagonal grains with a size of 1–4 μm were obtained from the adobe following tape calendaring (TCL). Elliptical and hexagonal grains with a size of 0.4–3 μm were obtained from the adobe of tape casting (TCS) using the three-step process. The electrical conductivities of YSZ with different grain sizes were measured via the four-probe DC technique and grain conductivities and grain boundary conductivities of YSZ were investigated by impedance spectroscopy. YSZ electrolytes with a grain size of 0.1–0.4 μm had the highest electrical conductivity in the range of 500–1000 °C, especially at medium and low temperatures 550–800 °C. As the YSZ grain size becomes small, the thickness of the intergranular region decreased greatly. The YSZ electrolytes with sub-micrometer grain sizes, high ion conductivity and low sintering temperatures are important to the electrode-supported SOFC, on which the dense YSZ electrolyte films are optimized at 10 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.