Abstract

Coaxial electrospinning, in which Poly (L-lactic acid-co-ε-caprolactone) (PLC) with different Lactic acid (LA) to caprolactone (CL) ratio (75:25 and 50:50) were employed to electrospin core-shell nanofibers which could mimic the native extracellular matrix for tissue engineering applications. Core-shell nanofibrous scaffolds of PLC (50:50)/BSA (426 ± 157 nm) and PLC (75:25)/BSA (427 ± 197 nm) were fabricated and model drug bovine serum albumin (BSA) was entrapped in the core layer. The morphology, core-shell structure and sustained release behaviors were evaluated by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), inverted fluorescence microscopy, water contact angle test and in vitro release test, respectively. The effect of core-shell structure and shell layer materials on the variation tendency of mechanical characterization in dry and wet situation were also investigated by tensile testing. The in vitro biocompatibility of scaffolds were investigated by growing human mesenchymal stem cells (hMSCs) on scaffolds surface and the proliferation of cells were evaluated with Alamar Blue tests. In vitro cultivations of hMSCs showed that PLC (50:50)/BSA scaffolds supported a significantly higher proliferation rate of seeded cells than scaffolds prepared by polymer PLC (75:25)/BSA. Overall, the PLC core-shell nanofibers possessed potentially regulable mechanical properties useful for tissue engineering as well as sustained release potential for medical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call