Abstract
Focused ion beam (FIB) lithography is used to fabricate patterned Co nano-elements from ultra-thin (30nm thick), electron-beam-evaporated Co films. The spin- and spatially-resolved surface magnetic structure (SMS) of the nano-scale Co elements is imaged in situ by using scanning ion microscopy with polarization analysis (SIMPA). SIMPA spin maps directly reveal the detailed spin structure of magnetic vortex and antivortex states, which can be utilized for ultra-high density, non-volatile magnetic memory devices. It is found that the SMS of the nano-magnetic structures depends strongly on the size of the patterned Co elements. In addition, FIB etching is utilized in situ to create well-defined defects (antidots) in the patterned Co elements, which strongly modify the previously existing SMSs leading to novel nano-magnetic states. The results show that ion–surface interaction, as provided by SIMPA spin mapping and in situ FIB processing, can be profitably exploited for studying SMSs of patterned magnetic systems to be used for nano-scale magnetic memory and magnetic logic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.