Abstract

Because of the power density advantages of fluid power systems, many researchers have developed microactuators using homogeneous electrorheological (ER) fluids (ERFs) for applications to various micromachines. An ER valve, as a critical component of the ER actuator, can control ERF flow by the apparent viscosity increase resulting from the applied electric field without any mechanical moving parts. Hence, it is adequate for the miniaturization of a fluidic microactuator. However, it is not easy to integrate rigid ER valves into soft microrobots. To overcome these limitations, we developed a novel elastic ER microarm using flexible ER valves (FERVs) in this study. Each microarm consists of an FERV, a movable chamber, and a displacement constraint element, so that it bends with the inner pressure controlled by the FERV. We proposed and developed a micro-electromechanical system fabrication process for the FERV, movable chamber, and displacement constraint element. By utilizing the proposed method, we successfully fabricate a FERV-integrated microarm. The characteristics of the FERV were experimentally clarified. In addition, the bending motion of the FERV-integrated microarm was demonstrated by experiments and verified by finite-element method simulation. This ER microarm was shown to be feasible for an ER microgripper composed of multiple microarms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.