Abstract
Abstract In this study, a hierarchical composite Kagome honeycomb sandwich (HCKHS) structure was manufactured based on the interlocking method, and its uniaxial compression performance was explored. Through experiments, the compressive strength, stiffness, energy absorption, and failure process of HCKHS specimens of seven different sizes were determined and compared. Mechanical analytical models were established, and the variation trend in the specific strength was predicted and compared with those of other advanced sandwich structures. The size effect of the HCKHS specimens was analyzed. The influence of a single variable on the core modulus, failure strength, and failure modes was discussed, and failure mechanism maps were drawn. The structure was optimized based on the maximum specific strength and engineering application, and the optimal size design ratio was obtained. The results showed that the HCKHS specimens exhibited excellent compressive properties with a convenient manufacturing process, making them suitable for lightweight applications in engineering. The optimization ideas presented herein are also applicable to other two-dimensional hierarchical or normal composite honeycomb sandwich structures with diamond, triangular, and hexagonal shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.