Abstract

We present the fabrication of a high optical quality single-walled carbon nanotubes (SWNTs) polyvinyl alcohol (PVA) composite film. The composites demonstrate strong saturable absorption at ∼1.5 μm, the spectral range for optical communications. By measuring the nonlinear transmission of a sub-picosecond pump pulse through the film, we were able to deduce a saturation fluence of ∼13.9 μJ/cm2 and a modulation depth ∼16.9% (in absorption) at a high pulse fluence ∼200 μJ/cm2. Transient saturable absorption is investigated by measuring the transmitted autocorrelation traces at various incident power levels. Observed side-peak suppression indicates a fast recovery time on the scale of ∼1 ps for our saturable absorber devices. Furthermore, we use these SWNT-PVA composite saturable absorbers as mode-lockers in an Er3+ fiber ring laser and achieve ∼560 fs pulse generation with good jitter performance and long term stability. The laser performance is also associated with the parameters of our SWNT based saturable absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.