Abstract

Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical properties of the composites due to the addition of nanoparticulates and the grain refinement. The strength of the composite materials was discussed using theoretical models of the Hall-Petch, Orowan, and thermal mismatch mechanisms to determine the contribution of each mechanism in total strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.