Abstract

Composite scaffolds of polyhydroxybutyrate-polyhydroxyvalerate (PHBV) with sol-gel-derived bioactive glass (BG, 58S) are fabricated by compression molding, thermal processing, and salt particulate leaching method. Structure and mechanical properties of the scaffolds are determined. The bioactivity of the composites is evaluated by soaking the scaffolds in a simulated body fluid (SBF), and the formation of the apatite layer on the scaffolds is determined by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results show that the PHBV/BG composites are bioactive as they induce the formation of apatite on the composite scaffolds after soaking in SBF for 3 days. In addition, the measurements of the water contact angles suggest that incorporation of BG into PHBV can improve the hydrophilicity of the composites and the enhancement is dependent on the BG content. Furthermore, the degradation assessment of the scaffolds is performed in phosphate-buffered saline (PBS) solution at 37 C. Weight loss and water absorption of the scaffolds, pH of the incubation media, and molecular weight measurements of the PHBV in the scaffolds are used to monitor the degradation of the scaffolds during a nine-week incubation in PBS. It has been found that the incorporation of bioactive glass into the PHBV delayed the degradation of PHBV in the composite scaffolds for the period investigated. The present results show not only a useful method to prepare composite scaffolds with improved properties but also a way of adjusting the in vitro degradation behavior of composite scaffolds by tailoring the content of bioactive glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.