Abstract

As a novel hollow nanostructure, hollow spindle-like hematite with uniform size and morphology was solvothermally synthesized. These hollow polycrystalline particles with the length of 220–300 nm, the width of 70–100 nm, and the wall thickness of ca. 18 nm were characterized by TEM, FE-SEM, XRD, FT-IR, TGA, Mössbauer spectrum, and XPS methods. It was found that these hollow-structured particles were transformed from their original solid spindle particles. During the hollow structure formation process, the interiors of solid particles were preferentially dissolved while the retained exteriors were protected by coordinated sulfate ions. The formation mechanism was proposed as a coordination-assisted dissolution process occurred in a reverse microemulsion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.