Abstract

Pigmented purpuric dermatosis (PPD) is a skin disorder mainly seen in the lower limbs. The nanofibrous web has been shown to be an appropriate alternative for the treatment of skin diseases as a drug delivery vehicle. In this study, sodium alginate (SA)/polyethylene oxide (PEO) nanofibers containing vitamin C (VC) were fabricated using both blended electrospinning and core/shell electrospinning. The resultant nanofibers were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. Enhancing the VC content resulted in increasing the nanofibers diameter. Also, the degradation rate and drug release were investigated. Drug release was evaluated using the in vitro dissolution and permeation method. The degradation rate and the drug release of the core/shell nanofibers were found to be lower than those of the blended nanofibers. The drug release of the extended nanofibers followed a different pattern, indicating that the extension of the nanofibers could be a promising way to control the drug release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.