Abstract

Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC), which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm−1 can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs) organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation.

Highlights

  • Neural injuries are very common in clinical practice and may lead to permanent disabilities in patients

  • Recent reports on neural regeneration highlight the promise of using electrospun nanofibrous scaffolds in combination with mesenchymal stem cells (MSCs) 4], human adipose tissue-derived stem cells 5], nerve precursor cells (NPCs) 6], neural stem cells 7] or Schwann cells (SCs) 8]

  • All five PHB/PHB copolymers with 3-hydroxyvalerate (PHBV) blend compositions were successfully electrospun at concentration of 6, 8 and 10% wt

Read more

Summary

Introduction

Neural injuries are very common in clinical practice and may lead to permanent disabilities in patients. Various strategies have been employed to create a biodegradable nerve guidance scaffold to assist regenerating axons by serving as a growth substrate for neural cells, 2]. As a result of contact guidance, a cell has the maximum probability of migration in preferred directions associated with chemical, structural and mechanical properties of the substrate 11]. It has been reported in different studies that, unidirectional aligned nanofibers can provide better contact guidance effects towards neurite outgrowth and help in providing cues to enhance SCs extension and axon regeneration 9,12–14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call