Abstract

Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared. The prepared CHS-PEGME and Lac/CHS-PEGME membranes were characterized by Fourier-transformed-infrared (FTIR) spectroscopy, scanning-electron-microscopy (SEM), and X-ray-diffraction (XRD). Pesticide degradation tests with Lac/CHS-PEGME were performed at different contact times and initial concentrations. Acetamiprid degradation was most effective (84 %) at the 12th hour, at an initial concentration of 0.1 mg/L, while diuron degradation was most effective (65 %) at an initial concentration of 6 mg/L and a contact time of 16th hour. Under optimum conditions, the reusability of Lac/CHS-PEGME was found to be 8 cycles for acetamiprid and 5 cycles for diuron. From these results, it is understood that acetamiprid is degraded more quickly and effectively than diuron. Adsorption process data were well fitted to the Langmuir isotherm model and the pseudo-first-order kinetic model. These findings showed that using Lac/CHS-PEGME was a practical and environmentally friendly method for acetamiprid and diuron degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.