Abstract

Nanocrystalline ceria-doped scandia-stabilized zirconia (1Ce10ScSZ) powders were prepared via the co-precipitation process for solid oxide fuel cell. The effects of the calcination temperature on different properties of the as-synthesized powders, such as phase evolution, crystalline size, and specific surface area were investigated. The synthesized powders calcined at 900 °C showed a specific surface area of 5 m2 g−1 and crystalline size of 28.2 nm, and ionic conductivity of 0.07S cm−1 as measured at 750 °C. An anode-supported electrolyte with a thin electrolyte layer of 6μm composed of the synthesized 1Ce10ScSZ powders was fabricated using the tape-casting and co-sintering techniques for a solid oxide fuel cell (SOFC) single cell. The open-circuit voltage of the single cell thus obtained was 1.11 V at 750 °C, indicating the dense microstructure of the electrolyte layer. A power density of 0.9W cm−2 was obtained for the SOFC single cell at 1.5A cm−2 and 750 °C. The SOFC single cell fabricated using the nanocrystalline 1CeScSZ electrolyte exhibited good performance because of the drastic reductions in the ohmic resistances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call