Abstract

This manuscript presents a simple, one-step method for the fabrication of micro/nanostructured metal-based superhydrophobic surfaces via electroplating using stacked polycarbonate membranes with nanoscale and microscale pores as a template. The two-tiered mushroom-shaped silver pillar arrays include a top layer composed of nanopillars and a bottom layer composed of T-shaped micropillars. The presence of the re-entrant surface structures with a strong resistance pin the droplets to the cap’s ridge and prevent water droplets from penetrating into the valleys of the rough surface, thus resulting in an increase in water contact angle (WCA). Compared with microstructured mushroom-shaped surfaces (WCA = 148°, sliding angle (SA) ∼ 26°) and nanostructured surfaces (WCA = 151.5°, SA ∼ 4.8°), the micro/nanostructured mushroom-shaped pillar arrays (WCA = 154.1°, SA ∼ 2°) exhibit remarkable superhydrophobic properties with high CA and low SA. This new micro/nanostructured surface will have a potential application in metal-based superhydrophobic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.