Abstract
A microfluidic device was fabricated via photolithographic techniques which can create transient elongational and shear forces ranging over three orders of magnitude while still maintaining laminar flow conditions. The contractional fluid flow inside the microfluidic device was simulated with FLUENT (a computational fluid dynamics computer program) and the local deformation forces were characterized with the scalar quantity, local energy dissipation rate. The sensitivities of four cell lines (CHO, HB-24, Sf-9, and MCF7) were tested in the device. The results indicate that all four cell lines are able to withstand relatively intense energy dissipation rates (up to 10(4)-10(5) kW/m(3)), which is orders of magnitude higher than the maximum local energy dissipation rates generated by impellers in bioreactors, but comparable to that associated with small bursting bubbles. While the concept that suspended animal cells are relatively robust with respect to purely hydrodynamic forces in bioprocess equipment is well known, these results quantitatively demonstrate these observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.