Abstract
The present study aims to investigate the advantages of diamond-like carbon (DLC) films in reducing friction and lubrication to address issues such as the low surface hardness, high friction coefficients, and poor wear resistance of titanium alloys. Cr-doped DLC films were deposited by high-power impulse magnetron sputtering (HiPIMS) in an atmosphere of a gas mixture of Ar and C2H2. The energy of the deposited particles was controlled by adjusting the target powers, and four sets of film samples with different powers (4 kW, 8 kW, 12 kW, and 16 kW) were fabricated. The results showed that with an increase in target power, the Cr content increased from 3.73 at. % to 22.65 at. %; meanwhile, the microstructure of the film evolved from an amorphous feature to a nanocomposite structure, with carbide embedded in an amorphous carbon matrix. The sp2-C bond content was also increased in films, suggesting an intensification of the film’s graphitization. The hardness of films exhibited a trend of initially increasing and then decreasing, reaching the maximum value at 12 kW. The friction coefficient and wear rate of films showed a reverse trend compared to hardness variation, namely initially decreasing and then increasing. The friction coefficient reached a minimum value of 0.14, and the wear rate was 2.50 × 10−7 (mm3)/(N·m), at 8 kW. The abrasive wear was the primary wear mechanism for films deposited at a higher target power. Therefore, by adjusting the target power parameter, it is possible to control the content of the metal and sp2/sp3 bonds in metal-doped DLC films, thereby regulating the mechanical and tribological properties of the films and providing an effective approach for addressing surface issues in titanium alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.