Abstract

Ropinirole hydrochloride (RPN), a nonergot dopamine D2-agonist used in the management of Parkinson’s disease, has poor oral bioavailability (52%) due to extensive hepatic metabolism. The intent of present research work was aimed at design and statistical optimization of RPN-loaded poly (lactic-co-glycolic acid) (PLGA)-based biodegradable nanoparticles (NPs) surface modified using natural emulsifier, vitamin E (d-α-tocopheryl polyethylene glycol 1000 succinate [TPGS]) for direct nose-to-brain delivery in order to avoid hepatic first-pass metabolism, and improve therapeutic efficacy with sustained drug release. RPN-NPs were prepared by modified nanoprecipitation technique and optimized using 23 factorial design of experiment. The effect of polymer and emulsifier concentration was evaluated on particle size and entrapment efficiency (EE%). Formulation PL6 was considered as desirable with highest EE% (72.3 ± 6.1%), PS (279.4 ± 1.8 nm), zeta potential (−29.4 ± 2.6 mV), and cumulative drug diffusion of 96.43 ± 3.1% in 24 h. The ANOVA results for the dependent variables demonstrated that the model was significant (p value < 0.05) for response variables. Histopathological study of optimized batch (PL6) demonstrated good retention of NPs with no severe signs of damage on the integrity of nasal mucosa. Differential scanning calorimetry revealed the absence of any chemical interaction between RPN, PLGA, and TPGS while SEM study confirmed spherical shape of optimized NPs. Accelerated stability studies of freeze-dried optimized batch demonstrated negligible change in the average PS and EE% after storage at 25 ± 2 °C/60 ± 5% (relative humidity (RH) for the period of three months. The promising results of optimized batch suggested practicability of investigated system for enhancement of bioavailability and brain targeting of CNS acting drugs like RPN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.