Abstract
In this study, interpenetrating polymer network hydrogels were developed based on sage seed gum (SSG) and globulin protein (Glo) extracted from the mucilage-free seeds. By combining Glo hydrogel with the SSG network the inherent weak gelation of the single SSG system was compensated. As the fraction of Glo increased, various properties of the interpenetrating polymer network (IPN) hydrogels improved substantially. Electrophoretic analysis under reducing conditions showed that Glo dissociated into subunits of approximately 30 kDa and 20 kDa, suggesting it comprises 11S globulin. FTIR spectrum revealed new peaks at 1645 cm−1 and 1537 cm−1 in the amide I and II regions, respectively, for the IPN hydrogels, indicating interactions between two hydrogel networks. Based on the weight loss measurements, the IPN hydrogels exhibited lower mass loss, particularly at higher Glo fractions up to 6 %. The IPN hydrogels also displayed enhanced elasticity, pseudoelasticity, thixotropy, and creep resistance compared to SSG hydrogel, indicating suitability for food, pharmaceutical, and biomedical applications. More broadly, this research provides a sustainable strategy toward innovative material development while advancing bio-based hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.