Abstract

High crystal quality GaN nanorod arrays were fabricated by inductively coupled plasma (ICP) etching using self-organized nickel (Ni) nano-islands mask on GaN film and subsequent repaired process including annealing in ammonia and KOH etching. The Ni nano-islands have been formed by rapid thermal annealing, whose density, shape, and dimensions were regulated by annealing temperature and Ni layer thickness. The structural and optical properties of the nanorods obtained from GaN epitaxial layers were comparatively studied by high-resolution X-ray diffraction (HRXRD), Raman spectroscopy and photoluminescence (PL). The results indicate that damage induced by plasma can be successfully healed by annealing in NH3 at 900 °C. The average diameter of the as-etched nanorod was effectively reduced and the plasma etch damage was removed after a wet treatment process in a KOH solution. It was found that the diameter of the GaN nanorod was continuously reduced and the PL intensity first increased, then reduced and finally increased as the KOH etching time sequentially increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.