Abstract

Nature's functional surfaces are typically hierarchical multiscale structures. There are several techniques for producing such artificial structures on polymers but their mass production is not straightforward. We present here a simple and versatile method for manufacturing hierarchical multiscale polymer surface patterns. The microroughening technique permits the single-step production of multilevel three-dimensional surface architectures in a mechanically durable nickel mold. The molding technique is suitable for area-controlled fabrication of structures with various geometrical shapes on smooth and curved surfaces. The mold structures were transferred to polypropylene surfaces by means of injection molding. The fabricated surface structures were characterized by using a filtered power spectral density method which facilitated a quantitative study of the roughness distributions at different length scales of structure periodicities. Analysis showed that the microroughening technique is an appropriate tool for controlled production of surface roughness at a micro-nanometer scale. Roughness distribution values can be used for predicting surface structure-related properties such as wetting, and the distributions can also be simulated without an experimental preparation process. The work presents a suitable approach for mass production of hierarchical polymer surfaces at different length scales and provides a new route for designing surface structures with tunable wetting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call