Abstract

The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call