Abstract

In this work, we reported the successful synthesis of four quaternary NiWFeB amorphous alloys (Ni53.9W4.3Fe24.2B17.6, Ni49.7W9.7Fe22.3B18.3, Ni46.2W14.1Fe20.8B18.9 and Ni42.2W19.2Fe18.9B19.7 in at.%) via melt spinning method. The synthesized amorphous alloys are characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimeter, scanning electron microscopy and Vickers indenters. The results showed that the crystallization temperatures T x1 of four amorphous alloys with increased W contents, derived from the exothermic peaks in DSC, were 705, 715, 851, and 965 K, respectively. The Vickers hardness (H v) of the corresponding four amorphous alloys at room temperature was 8.5, 9.8, 10.3, and 11.4 GPa, respectively. The much finer shear bands in the deformation region underneath the Vickers indenter were observed as the tungsten content increases. All the results showed a tendency that the higher the tungsten content, the greater the thermal stability and hardness. The results indicated the NiWFeB amorphous alloys could be easier fabricated by continuing to increase the tungsten content, and those NiWFeB amorphous alloys would have a promising application in nuclear energies and military defenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.