Abstract
Due to its excellent bone conductivity and drug adsorption as well as pH-responsive drug release property, hydroxyapatite (HAp) is widely used as a drug carrier in bone repair field. Here, we report for the first time a novel multi-functional polydopamine (PDA) coated Cu/F-codoped HAp (Cu/F-HAp-PDA) hollow microspheres. Both Cu2+ and F- were successfully doped into the lattice of HAp and uniformly distributed in the shell of hollow microspheres through a one-step hydrothermal synthesis. Then PDA was coated homogeneously on the outer layer of Cu/F-HAp hollow microspheres. Both Cu/F-HAp and Cu/F-HAp-PDA samples displayed high drug loading efficiency and pH responsive drug release behavior. Moreover, the obtained Cu/F-HAp-PDA hollow microspheres exhibited excellent photothermal conversion efficiency and photothermal stability. The molecular dynamics simulations showed that PDA and HAp can form mutual binding mainly through Ca-O bonding, while doxorubicin (DOX) is mainly bound to PDA molecules through hydrogen bonding and π-π stacking interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.