Abstract
In this study, a novel friction material with biomass-ceramic (SiC) dual matrixes was fabricated using Chinese fir pyrocarbon via the liquid-phase silicon infiltration and in situ growth method. SiC can be grown in situ on the surface of a carbonized wood cell wall by mixing and calcination of wood and Si powder. The samples were characterized using XRD, SEM, and SEM-EDS analysis. Meanwhile, their friction coefficients and wear rates were tested to study their frictional properties. To explore the influence of crucial factors on friction performance, response surface analysis was also conducted to optimize the preparation process. The results showed that longitudinally crossed and disordered SiC nanowhiskers were grown on the carbonized wood cell wall, which could enhance the strength of SiC. The designed biomass-ceramic material had satisfying friction coefficients and low wear rates. The response surface analysis results indicate that the optimal process could be determined (carbon to silicon ratio of 3:7, reaction temperature of 1600 °C, and 5% adhesive dosage). Biomass-ceramic materials utilizing Chinese fir pyrocarbon could display great promise to potentially replace the current iron-copper-based alloy materials used in brake systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.