Abstract

The In2S3 nano-flower films on TiO2/FTO (Fluorine-doped tin oxide) substrates were synthesized via hydrothermal method and the photoelectrochemical performances of In2S3/TiO2 photoelectrodes were characterized. The roles of PSS (poly(sodium-p-styrenesul-fonate)) and PEG (polyethylene glycol) on the structure controlling of In2S3 films were also discussed. The results show that the In2S3 nano-flower films consisted of ultrathin nanoflakes with a thickness of 5nm are successfully grew on the surface of TiO2 nanorod arrays. PEG could play a role as the morphology-directing agent by confining crystal growth in certain directions, while PSS could provide coordination sites with long chains and lead to the formation of spherical structure. The energy conversion efficiency of In2S3 nano-flower/TiO2 photoelectrodes enhances thrice compared with that of bare TiO2 photoelectrode. This research presents further insight for improving the efficiency of semiconductors by using the suitable electron transfer channels, which may be promising for rational construction of solar conversion and storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.