Abstract

Potassium triniobate (KNb3O8), which is an oxide semiconductor photocatalyst, has a layered structure consisting of negatively charged sheets of linked NbO6 octahedral units and K+ ions between the sheets. We report the flux growth of KNb3O8 crystals and their application for the photocatalytic decomposition of organic thin films. First, high quality, idiomorphic KNb3O8 crystals were successfully grown by cooling a KCl flux. Transparent-colorless KNb3O8 crystals had relatively uniform sizes and shapes. The size, morphology and phase of the grown crystals were dependent on the holding temperature and solute concentration. Next, highly crystalline NbOx nanosheets were successfully prepared via a two-step process, that is, proton exchange and subsequent exfoliation of the KNb3O8 crystals. Finally, the nanosheet layer spin-coated on a silica glass was used for photodegradation of hydrophobic organosilane thin films. The fabricated layer was colorless and transparent, and it absorbed ultraviolet (UV) light with a wavelength less than 350 nm. When organosilane thin films were placed in contact with the nanosheet layer and UV light was irradiated to the organosilane thin films through the transparent nanosheet layer, the wettability of organosilane layers was drastically converted from hydrophobic to ultrahydrophilic. The highly crystalline nanosheet layer was found to exhibit excellent photocatalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.