Abstract

We propose and evaluate a technique for the fabrication and interrogation of fiber-optic refractive index (RI) sensors based on etched MgO-based nanoparticle doped fibers. The discussed method does not require to inscribe a reflective element into the fiber. Instead, light backscattered by the fiber can give sufficient information that is necessary for detection, by performing the cross-correlation of Rayleigh scatter signatures in the etched zones. The performance of the sensor is monitored using distributed sensing, which allows to interrogate several points along the length of the fiber. The sensitivities of several etched fibers are compared. The largest sensitivity that has been achieved is 45.95 nm/RIU (RI units), with the possibility of implementing temperature compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.