Abstract

Sulfonated polyphenyl sulfone/phosphotungstic acid/silica (sPPS/PWA/silica) hybrid membranes were prepared and characterized as alternative materials for PEMFC operation at high temperature and low humidity conditions. Polyphenyl sulfone polymer (PPS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. The degree of sulfonation was determined by 1H-NMR analysis. Sulfonation levels from 25 to 45% were easily achieved by varying the content of the sulfonation agent. The hybrid membrane was composed of the mixture of sPPS solution, PWA/silica particles. The structures of the membranes were investigated by Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and by thermogravimetric analysis (TGA). The composite membranes gained good thermal resistance with insertion of PWA/silica. SEM results have proven the uniform and homogeneous distribution of PWA/silica in hybrid membrane. The existence PWA/silica has improved the water uptake, proton conductivity and oxidative stability of hybrid membrane. Gas diffusion electrodes (GDE) were fabricated by ultrasonic coating technique. Catalyst loading was 0.4mg Pt/cm2 for both anode and cathode sides. The membranes were tested in a single cell with a 5cm2 active area operating at the temperature range of 70 to 120°C and 100 and 30% relative humidity conditions. Single PEMFC tests performed at different operating temperatures indicated that sPPS/PWA/silica hybrid membrane was more stable and also performed better than pristine sPPS membrane. At the overall, the sPPS/PWA/silica hybrid membrane seems to be a promising alternative membrane for the possible utilization in PEMFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.