Abstract

This investigation is aimed to establish empirical relationships between continuous multi-seam friction stir cladding process parameters (i.e., rotational speed, welding speed and shoulder overlap ratio) and the quality characteristics (bond tensile strength, shear strength and corrosion) of dissimilar magnesium–aluminium alloy clad joints. The influence of considered process parameters on the clad properties was reported. Furthermore, multi-criterion optimization procedure was used to obtain ideal processing conditions, which can yield higher interface strength and lower corrosion rate of fabricated composite plate. Results indicate that, the aluminium-rich thin continuous layer, Mg-rich irregular shaped regions consists of Al3Mg2 and Al12Mg17 intermetallic compounds and nature of mechanical interlocking has great influence on the joint interface strength. On the other hand, the corrosion resistance of the clad joints is greatly affected by the amount of magnesium mixed with top aluminium sheet during friction stirring. Also, bend testing shows that, the cladded joints exhibit excellent ductility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call