Abstract

Transparent conducting oxides bilayer films stacked by one 130-nm-thick indium tin oxide (ITO) top layer and one 75-nm-thick zinc oxide (ZnO) buffer layer were grown onto polyethersulfone (PES) substrates by ion beam-assisted evaporation. The effects of ion energy and ZnO buffer layers on the structural and opto-electric properties of ITO films were initially investigated. The as-deposited ZnO buffer layers show wurtzite (0 0 2) preferred orientation on the PES substrates with ion beam assistance. The results of X-ray diffraction reveal a marked increase in the crystallinity of the ITO films which use ZnO as a buffer layer material. A drop of ∼60% in electrical resistivity of the ITO film on the PES can be achieved by using ZnO buffer layer. The transmittance of the ITO/ZnO bilayer was not deteriorated due to the insertion of ZnO layer. The lowest electrical resistivity of 6.552×10 −4 Ω-cm associated with the transmittance of ∼80% at the wavelength of 550 nm can be obtained for the ITO film on the ZnO-coated PES at ion energy of 60 eV. The ITO films on the ZnO-buffered PES with moderate control of ion energy have a promising future for the application of the contact layers for flexible solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.