Abstract
AbstractAt the University of Toledo (UT), we have investigated hydrogenated amorphous silicon (a-Si:H) n-i-p solar cells with intrinsic layers deposited at high rates, ~ 8 Å/s, using our UT multi-chamber load-locked PECVD system. a-Si:H i-layers were grown with a VHF plasma density of ~ 0.2 W/cm2 and a frequency of 70 MHz using various hydrogen dilution levels. It is observed from the current-voltage (I-V) device performance characteristics that the open-circuit voltage (Voc) increases with increasing hydrogen dilution reaching a maximum and then decreasing. This drop in Voc can be attributed to the transition region (or protocrystalline regime) from an amorphous phase into a mixed amorphous+nanocrystalline (a + nc) phase for the i-layer. An initial efficiency of 9.99% (Voc = 0.986 V, Jsc = 13.98 mA/cm2, FF = 72.5%) was obtained. Quantum efficiency (QE) measurement has shown that the blue light response increases as the hydrogen dilution increases. Very good blue light spectral response with QE values over 0.7 at the wavelength of 400 nm have been obtained for a-Si:H cells made under specific deposition conditions in which tailored protocrystalline silicon materials were incorporated at the i/p interface region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.