Abstract

In this work, 3D-Cf/HfC-SiC-based composites were fabricated and optimized via reactive melt infiltration (RMI) of Si into porous Cf/HfC-C preforms prepared by a sol-gel processing. The physical and chemical processes involved during the fabrication were identified and analyzed in details. It is revealed that fibers and interphase of the composites can be eroded during carbothermal reduction process, which can be further aggravated during RMI, with the formation of Hf-containing substance on the fibers surface. The fibers and interphase degradation is mainly induced by the reactions between HfO2 and C/SiC interphase layers at elevated temperatures. Accordingly, a two-step carbothermal reduction treatment was proposed for the optimization of the fabrication procedure. As a result, less fiber/interphase erosion and improved mechanical properties are achieved in the composites, with the bending strength increased by ∼49 % (from 214.1 ± 15.7 MPa to 319.0 ± 26.0 MPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.