Abstract

AbstractMembranes made of perfluorinated materials having a refractive index close to that of water enable straightforward detection of water solutes at the interface, hence providing a novel sensing tool for fluidic systems. Here it is reported the production by non‐solvent induced phase separation and characterization of microporous membranes made of Hyflon AD, an amorphous copolymer of tetrafluoroethylene. Their optical turbidity when soaked in liquids having different refractive indices is studied and the data are interpreted with an optical model linking scattered light and structural features of the membrane. The average polymer and pore chord lengths obtained in this way scale with the filtering pore size measured by capillary flow porometry. Then, the optical response of the membranes when soaked in aqueous surfactant solutions is investigated and the effects of the molecular adsorption on the internal membrane surface is successfully interpreted by an extension of the model. Overall, the results show that index‐matched membranes can be designed and produced to provide a simple optical detection of the composition of the soaking liquid or to monitor the initial stage of membrane fouling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.