Abstract

The five-layer asymmetric coupled quantum well (FACQW) is a new potential-tailored quantum well (QW) that is promising for ultrafast and ultralow-voltage optical modulators and switches. We succeeded in fabricating GaAs/AlGaAs FACQW with monolayer accuracy by the molecular beam epitaxy (MBE) method by monitoring reflection high-energy electron diffraction (RHEED) specular beam intensity oscillation. Photoabsorption current measurements of the FACQW sample showed good agreement with theoretical results, and a potential for much lower voltage operation. In addition, we studied the growth sequences of GaAs/AlGaAs QWs in the migration-enhanced epitaxy (MEE) method in order to fabricate the FACQW with steeper and flatter heterointerfaces. The sequence of supplying materials for Al0.3Ga0.7As growth, on which there is no report, was modified and optimized, and the QWs of higher quality were obtained at a growth temperature of 490°C using the optimized sequence. The results of photoluminescence measurements show that the MEE method modified as mentioned above is a promising growth technique for the fabrication of FACQWs of higher quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.