Abstract
In this article, cement-based wood composites (CWC) were prepared by the hydrostatic method using waste wood chips as filler material and cement mortar as the binder. The effects of wood content, wood particle size, and wood modification method on flexural strength, modulus of elasticity, and toughness were experimentally investigated. The results showed that the flexural toughness of the specimens became more pronounced with the increasing wood content and particle size, and the maximum value was 0.742. The flexural toughness of the samples reached the maximum value at 30% wood content after the wood was modified by NaOH and silane coupling agent. The changes in flexural strength and elastic modulus of the specimens were consistent, and both decreased with the increase in wood content. A positive correlation between the flexural strength of the samples and the wood particle size was observed. About 30% wood content, 5.0–10.0 mm wood particle size, and NaOH modification are recommended to prepare the composites. This research can open new avenues for the research and promotion of CWC paving materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.