Abstract

Abstract A multi-layered complex aluminum alloy was successfully fabricated by three-layer stack accumulative roll bonding(ARB) process. The ARB using AA1050 and AA5052 alloy sheets was performed up to 7 cycles at ambient temperature without lubrication. The specimen processed by the ARB showed a multi-layer aluminum alloy sheet in which two aluminum alloys are alternately stacked. The grain size of the specimen decreased with the number of ARB cycles, became about 350nm in diameter after 7cycles. The tensile strength increased with the number of ARB cycles, after 6c it reached 281MPa which is about twice higher than that of the starting material. The microstructures and mechanical properties of a three-layer AA1050/AA5052 alloy fabricated by the ARB were compared to those of the conventional ARB-processed material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.