Abstract
We describe fabrication and testing of composite flux qubits combining Nb- and Al-based superconducting circuit technology. This hybrid approach to making qubits allows for employing π-phase shifters fabricated using well-established Nb-based technology of superconductor–ferromagnet–superconductor Josephson junctions. The important feature here is to obtain high interface transparency between Nb and Al layers without degrading sub-micron shadow mask. We achieve this by in situ Ar etching using e-beam gun. Shadow-evaporated Al/AlOx/Al Josephson junctions with Nb bias pads show the expected current–voltage characteristics with reproducible critical currents. Using this technique, we fabricated composite Nb/Al flux qubits with Nb/CuNi/Nb π-shifters and measured their magnetic field response. The observed offset between the field responses of the qubits with and without π-junction is attributed to the π phase shift. The reported approach can be used for implementing a variety of hybrid Nb/Al superconducting quantum circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.