Abstract
We have performed an experimental study on the influence of a ferromagnetic continuous film in the magnetization reversal processes in discrete submicrometric antidot arrays fabricated on it. In order to compare the magnetic properties, two sets of antidot arrays have been fabricated over a cobalt thin film: embedded in the continuous film, and isolated by a trench surrounding the array. X-ray photoemission electron microscopy images of the virgin state show the same magnetic domain distribution in both sets of samples, finding no evidence of any effect of the surrounding film. This result is supported by the hysteresis loops measured with magneto-optical Kerr effect, as isolated and non-isolated arrays present almost coincident loops. A huge increase of the coercivity of the film is achieved, and the expected dependence on the geometrical parameters of the array is found, connecting the previous studies on the micro- and nanometric scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.