Abstract
In this paper, a novel Ag nanowires/TiO2 nanosheets/graphene nanocomposite was fabricated via a facile method of hydrothermal and calcination, and then the water treatment performance of it was evaluated for methylene blue (MB) and Escherichia coli removal. The as-prepared Ag nanowires/TiO2 nanosheets/graphene nanocomposite was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), UV–visible diffuse reflection spectroscopy (DRS), molecular dynamics simulation, and gas chromatography–mass spectrometry (GC-MS). All data revealed that the Ag/TiO2/graphene nanocomposite showed a rich cell structure. The photocatalytic activity of Ag/TiO2/graphene nanocomposite is higher than those of pristine TiO2 nanosheets and TiO2/graphene nanocomposite. Under optimized conditions, the degradation efficiency was 100% and 71% for MB (30 mg/L) and with 10 mg Ag/TiO2/graphene nanocomposite under UV and visible light irradiation for 2 h, respectively. Ag/TiO2/graphene also showed excellent bacteria-killing activity. Meanwhile, the Ag/TiO2/graphene nanocomposite exhibited microstructure stability and cyclic stability. The water treatment performance was enhanced mainly attributed to the excellent adsorption performance of graphene and the high efficiency in separation of electron–hole pairs induced by the remarkable synergistic effects of TiO2, Ag, and graphene. On the basis of the experimental results, the photocatalytic mechanism and MB degradation mechanism were proposed. It is hoped that our work could avert the misleading message to the readership, hence offering a valuable source of reference on fabricating composite photocatalyst with stable microstructure and excellent performance for their application in the environment clean-up. Graphical abstractElectronic supplementary materialThe online version of this article (10.1007/s42114-020-00164-2) contains supplementary material, which is available to authorized users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.