Abstract

We present a review of our work on the micro/nano-scale design, fabrication and integration of optical waveguide arrays and devices for what we call application-specific "optical printed circuit boards" (O-PCBs). Generic O-PCBs are composed of an optical layer carrying basic forms of optical wires and devices and an electrical layer carrying arrays of electrical wires and devices. Application-specific O-PCBs carry optical layers that are composed of varied forms of optical wires and devices tailored to perform specific functions. In this paper, we present two examples of application specific O-PCB: One is a module for inter-chip optical interconnection application and the other is an all optical wavelength splitting triplexer module that we investigated for subscriber telecommunication application. The inter-chip optical interconnection module is to replace copper wires between the central processing units (CPUs) and memory chips in the computer system. The triplexer module is composed of an array of cascaded directional couplers to split the wavelengths for fiber-to-the-home (FTTH) subscriber system application. All these O-PCBs consist of planar circuits and arrays of polymer waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. We fabricate polymer waveguide by way of thermal or ultraviolet (UV) embossing (or imprinting) technique. Theoretical calculations provide design rules for the miniaturization of the waveguide devices and for the maximization of the integration densities of the waveguides and devices to be placed on the O-PCBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call