Abstract

Hydrogen embrittlement has become a hot research topic due to the rapid development of hydrogen energy and coating technology is regarded as the most efficient method to mitigate hydrogen embrittlement. However, the grain gaps in coatings frequently serve as paths for hydrogen permeation thus decreasing the protecting effects. In this work, ion bombardment is performed during magnetron sputtering deposition of dense CrN coatings to decrease the formation of grain gaps. The compactness of the CrN coatings is improved by disrupting the growth of grains using energetic ion bombardment. Hydrogen permeation tests reveal that the apparent hydrogen diffusion coefficient and hydrogen permeability of the dense CrN coating 52.6 and 24.1 times less than those of the unprotected substrate. The tensile test also reveals excellent hydrogen embrittlement resistance compared to the X70 substrate and conventional coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.