Abstract

This paper aims to assess the thermal management of a printed circuit board (PCB), as an electronic chipset, with the aid of a mini-channel heat-sink utilizing fluid flow and nano-enhanced phase change materials (NPCMs), as a semi-active/passive technique. The effects of various parameters such as heat fluxes (4, 7, and 10 kW/m2), flow rates (50, 80, and 110 ml/min), PCM types (paraffin 56–58 °C and 46–48 °C), and NPCM types (TiO2-PCM and Fe3O4-PCM) on the transient temperature, thermal resistance, and thermal effectiveness of the heat-sink are disclosed. After successful demonstration of 50 ml/min as the flow rate, the PCB temperature in the case of the heat-sink with the simultaneous fluid flow (50 ml/min) and PCM (paraffin 56–58 °C) and PCM (paraffin 46–48 °C) decreased by 6.5 and 9.5 °C, respectively, in comparison with the water-based heat-sink. Results show that by dispersing TiO2 and Fe3O4 nanoparticles into pure paraffin, the steady-state temperature of the PCB decreased and the heat-sink cooling ability is enhanced as compared to the pure paraffin. The highest temperature reduction (17.9-13.2 °C) and minimum thermal resistance (2.62–3.03 °C.m2kW) in different cooling systems is seen in the cases of heat-sink with TiO2-PCM (4% wt.) and Fe3O4-PCM (8% wt.).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call