Abstract

Structures having continuous porous networks are of great interest for applications in areas such as separation, energy storage, and tissue engineering. Bicontinuous interfacially jammed emulsion gels ("bijels") have been actively investigated as templates for fabricating useful structures for such applications. However, the fabrication of bijels-templated porous nanocomposites incorporated with reinforcing or functional nanoparticles (or nanofibers) to provide specific, targeted functions is still a challenge, stemming from the difficulties of fabricating functional nanoparticle-containing bijels. In this study, bijels-derived porous nanocomposites incorporated with multiwalled carbon nanotubes (MWCNTs), which possessed interconnected channels inside the structures, were made via a facile phase inversion technique for bijels fabrication. For the composite manufacture, in the first step of bijels fabrication, MWCNT adsorption into the oil phase of bijels was observed. It was revealed that MWCNTs were physically absorbed into the oil-rich phase without disrupting the bicontinuous structure of bijels. The successful fabrication of non-crosslinked and crosslinked porous structures containing MWCNTs was evidenced through imaging by confocal laser scanning microscopy and scanning electron microscopy, respectively. For potential controlled release applications, an anticancer drug, doxorubicin hydrochloride (DOX), was incorporated into bijels-derived structures and nanocomposites. The in vitro DOX release profiles from drug delivery systems based on bijels-derived MWCNT-containing nanocomposites suggested that the photothermal effect of MWCNTs initiated by near-infrared irradiation could modulate the drug release behavior. Overall, this study has developed a facile approach to fabricate bijels-templated bicontinuous porous structures incorporated with functional nanoparticles (or nanofibers) and opened an avenue for making MWCNT-containing porous nanocomposites for controlled drug release applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.