Abstract

As green, less toxic, and abundant ligands with rich functional groups, natural products are widely used in synthesis of chromatographic stationary phases. In this work, dodecyl imide maleopimaric acid glycidyl methacrylate ester (C12-MPAGN) was prepared from maleopimaric acid through the imidization and ring-opening based esterification reaction. By using “thiol-ene” click chemistry, it was chemically bonded to the silica and (3-mercaptopropyl) trimethoxysilane (γ-MPS) was used as the coupling agent to obtain dodecyl imide maleopimaric acid glycidyl methacrylate ester bonded silica stationary phase (Sil-C12-MPAGN). Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopies (SEM), and elemental analysis (EA) were utilized to verify that the Sil-C12-MPAGN stationary phase was successfully prepared with C12-MPAGN immobilized on the silica surface. In order to evaluate the chromatographic performance and retention mechanisms of the Sil-C12-MPAGN column and compared with C18 column, a variety of compounds were used, including stander mixture of Tanaka, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), phenols and flavonoids. Based on these multiple interactions, including hydrophobic, hydrogen-bonding, and π-π interactions, high selectivity and superior separation performance were demonstrated by the Sil-C12-MPAGN column for probe molecules what had previously been mentioned. In addition, the quantitative determination of paclitaxel content in Yew bark extract was conducted with this column, which was found that the concentration was 83.67 mg/L, respectively. In short, the present study proposes a new strategy for introducing rosin to liquid chromatography with high selectivity and separation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call