Abstract

A customized implantable drug delivery system with the dual functions of playing a supporting role and providing continuous bacteriostasis is of great importance during the treatment of bone defect diseases. The main objective of this study was to explore the potential of using three-dimensional (3D) printing technologies to fabricate customized implants. Ciprofloxacin hydrochloride (Cipro) was chosen as the model drug, and two printing technologies, semisolid extrusion (SSE) and fused deposition modeling (FDM) were introduced. Six kinds of implants with customized irregular shapes were printed via FDM technology. Two kinds of implants with customized dosages were constructed via SSE technology. In addition, three kinds of implants with customized internal structures were produced via FDM and SSE technologies. The data for morphology, dimensions and mechanical properties demonstrated satisfactory printability and good printing accuracy when applying SSE and FDM technologies to produce the customized implants. The dissolution curves indicated that the desired customized drug release could be achieved by designing the specific internal structures. The biocompatibility examination showed that the printed implants possessed outstanding biocompatibility. In conclusion, all results suggested that 3D printing technologies provide a feasible method and novel strategy to fabricate customized implantable drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call