Abstract

Acellular nerve allografts are promising alternatives to autologous nerve grafts, but still have many drawbacks which greatly limit their curative effects. Here, we developed an optimized acellular nerve allograft with multiple axial channels by a modified decellularization method. These allografts were confirmed to preserve more extracellular matrix components and factors, and remove cellular components effectively. Meanwhile, macrochannels and microchannels were introduced to optimize internal microstructure of allografts, which increases porosity and water absorption, without significant loss of mechanical strength. The in vitro experiments demonstrated that the multichannel allografts showed superior ability of facilitating proliferation and penetration of Schwann cells. Additionally, in the in vivo experiments, the multichannel allografts were used to bridge 10 mm rat sciatic nerve defects. They exhibited better capacity to guide regenerative nerve fibers through the defective segment and restore innervation of target organs, thus achieving better recovery of muscle and motor function, in comparison with conventional acellular allografts. These findings indicate that this multichannel acellular nerve allograft has great potential for clinical application and provides a new prospective for future investigations of nerve regeneration. Statement of SignificanceAcellular nerve allografts, with preservation of natural extracellular matrix, are officially approved to repair peripheral nerve injury in some countries. However, bioactive component loss and compact internal structure result in variable clinical effects of conventional acellular allografts. In the present study, we fabricated an optimized acellular nerve allograft with multiple axial channels, which could both enable decellularization to be easily accomplished and reduce the amount of detergents in the preparation process. Characterization of the multichannel acellular allografts was confirmed to have better preservation of ECM bioactive molecules and regenerative factors. Efficiency evaluation showed the multichannel allografts could facilitate Schwann cells to migrate inside them in vitro, and enhance regrowth and myelination of axons as well as recovery of muscle and motor function in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call