Abstract

BackgroundThere has been huge interest among the researchers to incorporate a medicinally active compounds in hydrogel sheets for effective treatment of wound healing. This research work involves development and evaluation of medicated hydrogel sheet incorporated with embelin which has both antimicrobial and wound healing activity. Embelin was isolated from the fruits of Embelia ribes and characterized by various physical and analytical methods like melting point, UV/VIS spectroscopy, and HPTLC. The hydrogel sheets containing polyvinyl alcohol and polyethylene glycol was prepared by freeze-thaw technique, where isolated embelin was successfully incorporated within the sheet. The prepared hydrogel sheets were further characterized by in vitro drug release study, swelling capacities, gel fraction, water vapor transmission rate (WVTR), mechanical strength, and scanning electron microscopy (SEM) study. Finally, the optimized hydrogel with embelin was evaluated for its wound healing efficacy in vivo using excision wound model on Sprague–Dawley rats.ResultsThe optimized hydrogel sheet had a composition of 5% PEG 400 and 10% PVA. It had acceptable in physico-chemical properties with respect to swelling capacities, gel fraction, water vapor transmission rate (WVTR), and mechanical strength The release of the drug from hydrogel followed zero order kinetics with more than 80% drug release within 12 h. The in vivo studies on the Sprague–Dawley showed faster healing process with embelin loaded hydrogels as compared to the control and market formulation.ConclusionsSheet hydrogel with 0.2% embelin was found to have huge potential for moist wound healing activity.

Highlights

  • There has been huge interest among the researchers to incorporate a medicinally active compounds in hydrogel sheets for effective treatment of wound healing

  • The purity and identity of the isolated embelin were compared against the reference standard

  • The crystallization of the embelin from E. ribes yielded 97% purity determined by High-performance liquid chromatography (HPLC)

Read more

Summary

Results

The optimized hydrogel sheet had a composition of 5% PEG 400 and 10% PVA. It had acceptable in physico-chemical properties with respect to swelling capacities, gel fraction, water vapor transmission rate (WVTR), and mechanical strength The release of the drug from hydrogel followed zero order kinetics with more than 80% drug release within 12 h. The in vivo studies on the Sprague–Dawley showed faster healing process with embelin loaded hydrogels as compared to the control and market formulation

Background
Methods
Results and discussion
Conclusion
Funding Not applicable
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call