Abstract

This study proposed a novel and biodegradable nerve guide conduit in its applicability to peripheral nerve regeneration. A naturally occurring proanthocyanidin (PA) was selected as a cross-linking reagent in preparing the PA-crosslinked gelatin (PCG) conduit. Experimental results indicate that 5 wt % of PA was optimal in the complete cross-linking reaction in the PCG conduit. The PCG conduit was brownish and round with a rough outer surface whereas its inner lumen was smooth. The cross-linked networks of the PCG conduit resisted enzymatic hydrolysis under in vitro degradation studies. PA and gelatin were released from the soaked PCG conduit. During the release phase, the concentrations of PA, gelatin, and PCG-soaking solutions were not only nontoxic but also promoted the viability and growth of Schwann cells. The PCG conduit more effectively supported cell attachment and growth. The effectiveness of the PCG conduit as a guidance channel was studied when it was used to repair a 10 mm gap in the rat sciatic nerve. Throughout the 8-week experimental period, the peak amplitude and area under the muscle action potential curve both increased with the recovery period. Histological observations revealed that various regenerated nerve fibers crossed through and beyond the gap region. These results suggest that the PCG conduit can be a candidate for peripheral nerve repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.