Abstract

Layered bismuth oxychalcogenides have been demonstrated as potential candidates for high-speed and low-power electronics due to their outstanding environmental stability and high carrier mobility, but the photoelectric performance of bulk species is still far from satisfactory. Herein, a novel Bi9O7.5S6/CdS composite film with a type-II heterojunction has been successfully prepared by combining chemical bath deposition (CBD) and spin-coating technologies. The structure, morphology, optical and photoelectric properties of the samples were investigated systematically. The photoelectric current of the Bi9O7.5S6/CdS composite film was obtained as 32.49 μA cm-2 at 1 V, which is about 13.9-fold and 3.3-fold higher than those of bare Bi9O7.5S6 and CdS. An enhanced photoelectric response and photostability were achieved in the Bi9O7.5S6/CdS composite film, and can be appropriately attributed to the improved separation and transfer of photogenerated carriers driven by the type-II heterojunction. This work offers a promising route to develop high-performance visible-light photoelectric devices with type-II heterojunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.